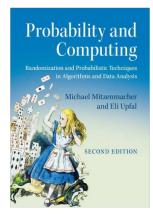
CS155/254: Probabilistic Methods in Computer Science

Chapter 15: Pairwise Independent and Hashing



Pairwise Independence

Definition

1 A set of events $E_1, E_2, \ldots E_n$ is *k*-wise independent if for any subset $I \subseteq [1, n]$ with $|I| \leq k$,

$$\Pr\left(\bigcap_{i\in I} E_i\right) = \prod_{i\in I} \Pr(E_i).$$

2 A set of random variables X₁, X₂,... X_n is k-wise independent if for any subset I ⊆ [1, n] with |I| ≤ k, and any values x_i, i ∈ I,

$$\Pr\left(\bigcap_{i\in I}X_i=x_i\right) = \prod_{i\in I}\Pr(X_i=x_i).$$

If true for k = n the random variables are *mutually independent*.

Pairwise Independent

Definition

The random variables X_1, X_2, \ldots, X_n are said to be *pairwise independent* if they are 2-wise independent. That is, for any pair *i*, *j* and any values *a*, *b*,

 $\Pr((X_i = a) \cap (X_j = b)) = \Pr(X_i = a) \cdot \Pr(X_j = b).$

Application: We can construct $m = 2^b - 1$ uniform pairwise independent 0-1 random variable from *b* independent, uniform random bits, X_1, \ldots, X_b . $m = 2^b - 1$ uniform pairwise independent 0-1 random variable in a sample space with 2^b simple events.

Construction of Pairwise Independent Bits

We are given b independent, uniform random bits, X_1, \ldots, X_b .

Let S_1, \ldots, S_{2^b-1} be an arbitrary order of all the non-empty subsets of $\{1, 2, \ldots, b\}$.

Let \oplus be the exclusive-or operation. Define $m = 2^{b} - 1$ random variables

$$Y_j = \oplus_{i \in S_j} X_i = \sum_{i \in S_j} X_i ext{ mod } 2$$

- $Pr(Y_i = 1) = Pr(Y_i = 0) = 1/2$. Let $z \in S_i$. Fix the bits in $S_i \{z\}$. The value of Y_i is determined by the value of z.
- Pairwise independence: For any $c, d \in \{0, 1\}$

 $\Pr((Y_k = c) \cap (Y_\ell = d)) = \Pr(Y_\ell = d \mid Y_k = c) \cdot \Pr(Y_k = c) = 1/4.$

Since the value of Y_{ℓ} is determined by $z \in S_{\ell} \setminus S_k$

Thus, Y_1, \ldots, Y_{2^b-1} are pairwise independent, uniform $\{0, 1\}$ random variables.

The Expectation Argument: Large Cut-Set in a Graph.

Theorem

Given any graph G = (V, E) with *n* vertices and *m* edges, there is a partition of V into two disjoint sets A and B such that at least m/2 edges connect a vertex in A to a vertex in B.

Let $Y_1 \dots, Y_n$ pairwise independent uniform $\{0, 1\}$ random variables, generated from $\log_2 n + 1$ independent random bits.

Place such that vertex *i* is in set *A* if $Y_i = 0$ else vertex *i* is placed in set *B*.

Let $Z_e = 1$ if edge *e* crosses the cut, and $Z_e = 0$ otherwise.

Let $e = \{i, j\}$, then $\Pr(Z_e = 1) = \Pr(Y_i \neq Y_j) = \frac{1}{2}$,

 $\mathbf{E}[Z] = \mathbf{E}\left[\sum_{i=1}^{m} Z_i\right] = \sum_{i=1}^{m} \mathbf{E}[Z_i]$, the sample space has an assignment with a cut $\geq m/2$.

The sample space has only 2n simple event, algorithm can try all simple events to find a good assignment.

Independent Set in a Graph

An *independent set* in a graph G is a set of vertices with no edges between them.

Theorem

Let G = (V, E) be a graph on n vertices with dn/2 edges. Then G has an independent set with at least n/2d vertices.

Algorithm:

- Delete each vertex of G (together with its incident edges) independently with probability 1 1/d.
- 2 For each remaining edge, remove it and one of its adjacent vertices.

X = number of vertices that survive the first step of the algorithm.

$$E[X] = \frac{n}{d}$$

Y = number of edges that survive the first step. An edge survives if and only if its two adjacent vertices survive.

$$E[Y] = \frac{nd}{2} \left(\frac{1}{d}\right)^2 = \frac{n}{2d}.$$

The second step of the algorithm removes all the remaining edges, and at most \pmb{Y} vertices.

Size of output independent set:

$$E[X-Y] = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d}.$$

The n events of deleting nodes need only to be pairwise independent events.

Deterministic Algorithm for Independent Set

Theorem

Let G = (V, E) be a graph on *n* vertices with dn/2 edges. We can compute in $O(n^{\log_2 d})$ steps an independent set in *G* with at least n/2d vertices.

The existence proof required *n* pairwise 0-1 independent events with probabilities 1/d, 1 - 1/d.

If n + 1 and d + 1 are powers of two, we can use $\log_2 d$ independent sets of n pairwise independent bits. The $\log_2(n + 1)$ random bits used for generating each of the $\log_2 d$ sets are independent.

For $i = 1, ..., \log_2 n$ and j = 1, ..., n, let Y_j^i be the random bit of vertex j in system i.

Delete vertex j if all its $\log_2 d$ bits are 1. Probability that a node is deleted is 1/d.

For each *i* and $j \neq k$, $Pr(Y_j^i = 1 \cap Y_k^i = 1) = 1/4$. Since the $\log_2 d$ sets are independent, the probability that vertices *j* and *k* are deleted is $1/d^2$.

The sample space was generated with a total of $\log_2 d \log_2(n+1)$ bits. It has $(n+1)^{\log_2 d}$ events. We can check all of them to find an independent set with the required size.

Deviation Bound

You cannot use Chernoff bound but you can use Chebyshev bound.

Theorem

Let $X = \sum_{i=1}^{n} X_i$, where the X_i are pairwise independent random variables. Then

$$\mathsf{Var}[X] = \sum_{i=1}^n \mathsf{Var}[X_i].$$

Proof: $\operatorname{Var}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \operatorname{Var}[X_i] + 2 \sum_{i < j} \operatorname{Cov}(X_i, X_j).$

For Pairwise independent X_i, X_2, \ldots, X_n ,

 $\mathbf{Cov}(X_i, X_j) = \mathbf{E}[(X_i - \mathbf{E}[X_i])(X_j - \mathbf{E}[X_j])] = \mathbf{E}[X_i X_j] - \mathbf{E}[X_i] E[X_j] = 0.$

Corollary

Let $X = \sum_{i=1}^{n} X_i$, where the X_i are pairwise independent random variables. Then

$$\Pr(|X - \mathbf{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2} = \frac{\sum_{i=1}^n \operatorname{Var}[X_i]}{a^2}$$

Perfect Hashing

We want to store n records using minimus space and minimum retrieval (search) time.

We can store the *n* records in a sorted order. Space = O(n), retrieval time = $O(\log n)$

We can hash the *n* keys to a table of size O(n), with O(1) expected retrieval time, and $O(\log n)$ expected maximum retrieval time. (We need a table of size $\Omega(n^{1+\epsilon})$ for expected maximum $1/\epsilon$.)

Goal: Store a **static dictionary** of *n* items in a table of O(n) space such that any search takes O(1) time.

Static dictionary - any insert or delete operation requires rearranging the entire table.

Universal hash functions

Definition

Let U be a universe with $|U| \ge n$ and $V = \{0, 1, ..., n-1\}$. A family of hash functions \mathcal{H} from U to V is said to be *k*-universal if, for any elements $x_1, x_2, ..., x_k$, when a hash function *h* is chosen uniformly at random from \mathcal{H} ,

$$\Pr(h(x_1) = h(x_2) = \ldots = h(x_k)) \le \frac{1}{n^{k-1}}.$$

If $Pr(h(x_1) = h(x_2) = \ldots = h(x_k)) = \frac{1}{n^{k-1}}$, then for any x_1, x_2, \ldots, x_k the random variables $h(x_1), \ldots, h(x_k)$ are k-pairwise independent.

Example of 2-Universal Hash Functions

Universe $U = \{0, 1, 2, ..., m-1\}$ Table keys $V = \{0, 1, 2, ..., n-1\}$, with $m \ge n$. A family of hash functions obtained by choosing a prime $p \ge m$,

 $h_{a,b}(x) = ((ax + b) \mod p) \mod n,$

and taking the family

$$\mathcal{H} = \{h_{a,b} \mid 1 \le a \le p-1, 0 \le b \le p\}.$$

Lemma

 \mathcal{H} is 2-universal.

Lemma

\mathcal{H} is 2-universal.

Proof: We first observe that for $x_1, x_2 \in \{0, \dots, p-1\}$, $x_1 \neq x_2$,

 $ax_1 + b \neq ax_2 + b \mod p$.

Thus, if $h_{a,b}(x_1) = h_{a,b}(x_2)$ there is a pair (s, r) such that,

- **1** $(ax_1 + b) \mod p = r$
- **2** $(ax_2 + b) \mod p = s$

For each r there are $\leq \lceil \frac{p}{n} \rceil - 1$ values $s \neq r$ such that $s = (r \mod n)$, and for each pair (r, s) there is only one pair (a, b) that satisfies the relation.

Over all the p(p-1) choice of (a, b), r gets p different values. Thus, the probability of a collision is $\leq \frac{p(\lceil \frac{p}{n} \rceil - 1)}{p(p-1)} \leq \frac{1}{n}$.

Lemma

If $h \in \mathcal{H}$ is chosen uniformly at random from a 2-universal family of hash functions mapping the universe U to [0, n - 1], then for any set $S \subset U$ of size m, with probability $\geq 1/2$ the number of collisions is bounded by m^2/n .

proof:

Let s_1, s_2, \ldots, s_m be the *m* items of *S*. Let X_{ij} be 1 if the $h(s_i) = h(s_j)$ and 0 otherwise. Let $X = \sum_{1 \le i \le j \le n} X_{ij}$.

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq m} \mathbf{E}[X_{ij}] \leq \binom{m}{2} \frac{1}{n} < \frac{m^2}{2n},$$

Markov's inequality yields

$$\Pr(X \ge m^2/n) \le \Pr(X \ge 2\mathbf{E}[X]) \le \frac{1}{2}.$$

Definition

A hash function is perfect for a set S if it maps S with no collisions.

Lemma

If $h \in \mathcal{H}$ is chosen uniformly at random from a 2-universal family of hash functions mapping the universe U to [0, n - 1], then for any set $S \subset U$ of size m, such that $m^2 \leq n$ with probability $\geq 1/2$ the hash function is perfect

 $\Pr(X \ge 1) \le \Pr(X \ge m^2/n) \le \Pr(X \ge 2\mathbf{E}[X]) \le \frac{1}{2}.$

Theorem

The two-level approach gives a perfect hashing scheme for m items using O(m) bins.

Level I: use a hash table with n = m. Let X be the number of collisions,

$$\Pr(X \ge m^2/n) \le \Pr(X \ge 2\mathbf{E}[X]) \le \frac{1}{2}.$$

When n = m, there exists a choice of hash function from the 2-universal family that gives at most m collisions.

Level II: Let c_i be the number of items in the *i*-th bin. There are $\binom{c_i}{2}$ collisions between items in the *i*-th bin, thus

$$\sum_{i=1}^m \binom{c_i}{2} \leq m.$$

For each bin with $c_i > 1$ items, we find a second hash function that gives no collisions using space c_i^2 . The total number of bins used is bounded above by

$$m + \sum_{i=1}^{m} c_i^2 \le m + 2 \sum_{i=1}^{m} {c_i \choose 2} + \sum_{i=1}^{m} c_i \le m + 2m + m = 4m.$$

Hence the total number of bins used is only O(m).

Perfect Hashing

Theorem

There is a storage method that can store m keys in a table of size O(m) with O(1) search time.